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AbstractÐThe analysis and visualization of flows is a central problem in visualization. Topology-based methods have gained

increasing interest in recent years. This article describes a method for the detection of closed streamlines in flows. It is based on a

special treatment of cases where a streamline reenters a cell to prevent infinite cycling during streamline calculation. The algorithm

checks for possible exits of a loop of crossed edges and detects structurally stable closed streamlines. These global features are not

detected by conventional topology and feature detection algorithms.

Index TermsÐVector field topology, limit cycles, closed streamlines.

æ

1 INTRODUCTION

AN intuitive and often used method for vector field
visualization is the calculation of streamlines. If one

uses this technique in turbulent fields, one often encounters
the problem of closed streamlines. A similar problem is
discussed in [6], where residence time is used to find
recirculation regions. When reaching a closed streamline,
the residence time is infinite.

The difficulty with standard integration methods is that
streamlines approaching a closed curve cycle around that
curve without ever approaching a critical point or the
boundary. Usually, one uses a stopping criteria like elapsed
time or number of integration steps to prevent infinite
loops. We present here an algorithm that detects this
behavior and that can be used to visualize closed
streamlines since these topological features are an essential
topological property of the field.

Topological methods have received increasing interest in
scientific visualization since their introduction by Helman
and Hesselink [4], [7], [11], [14, chapter 21], [17], [16]. Our
problem here is also related to the study of dynamical
systems [5], [9], which have also been an application area
for visualization. KocËak et al. [12] concentrate on the use of
computer graphics for understanding Hamiltonian systems
that appear frequently in mechanics. Hepting et al. [8] study
invariant tori in four-dimensional dynamical systems by
using suitable projections into three dimensions to enable
detailed visual analysis of the tori. Wegenkittel et al. [20]
present visualization techniques for known features of
dynamical systems. BuÈ rkle et al. [2] use a numerical
algorithm developed by some of the coauthors [3] to
visualize the behavior of more complicated dynamical
systems. In the numerical literature, we can find several
algorithms for the calculation of closed curves in dynamical

systems [10], [19], but these algorithms are tailored to deal
with smooth dynamical systems where a closed form
solution is given. In contrast, visualization faces, far more
often, piecewise linear or bilinear vector fields. Here, the
knowledge of the grid and the linear structure of the field in
the cells allow a direct approach for the search of closed
streamlines. The algorithm can be integrated in the stream-
line calculation as we will show. We repeat necessary terms
on vector field topology in Section 2. Section 3 describes the
algorithm for detecting closed streamlines. Results are
presented in Section 5. Research questions are discussed,
together with conclusions, in Section 6.

2 THEORY

This section repeats the theoretical background and the
terms used in vector field topology which are used for our
algorithm. The description of the PoincareÂ map mainly
follows Abraham and Shaw [1].

2.1 Topology and Limit Cycles

The topology of planar vector fields concentrates on origin
and end of streamlines. By combining curves of equal
behavior into regions, the information contained in the field
is concentrated. The boundaries of these regions are curves
and points building a graph called topological skeleton. The
origins or ends of streamlines are often critical points [7] or
the boundary. Another common case appears if closed
streamlines are present. This is often the case in plane
vector fields on cutting planes because the third component
is missing. This article shows how to detect and visualize
these cycles.

We restrict our consideration in this article to planar,
steady vector fields v : IR2 � D! IR2; �x; y� 7! v�x; y�. D
is assumed to be bounded. This is the situation for many
experimental or simulated planar vector fields that have to
be visualized. We are interested in the behavior of
streamlines

ca : IR! IR2; t7!ca�t�; �1�
with the properties
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ca�0� � a �2�

@ca
@t
�t� � v�ca�t��: �3�

For Lipschitz continuous vector fields, we can prove the
existence and uniqueness of streamlines ca through any

point a 2 D, see [9], [13]. The actual computation of the
streamlines is usually done by numerical algorithms like

Euler methods, Runge-Kutta-Fehlberg methods, or Predic-
tor/Corrector methods [15], [18].

The topological analysis of vector fields considers the
asymptotic behavior of streamlines. The origin set or �-limit

set of a streamline c is defined by

fp 2 IR2j9�tn�1n�0 � IR; tn ! ÿ1; lim
n!1��tn� ! pg:

The end set or !-limit set of a streamline � is defined by

fp 2 IR2j9�tn�1n�0 � IR; tn !1; lim
n!1��tn� ! pg:

If the �- or !-limit set of a streamline consists of only one
point, this point is a critical point or a point at the boundary

@D of our domain D. (It is assumed that the streamline stays
at the boundary point forever in this notation.) The critical

points are divided into sources, sinks, and saddles. A source

has a neighborhood where all streamlines start at the
source. A sink has a neighborhood where all streamlines

end at the sink. A saddle has only a finite number of
streamlines that start or end at the saddle. All other

streamlines in any neighborhood do not reach the saddle.
The most common case of an �- or !-limit set in a planar

vector field containing more than one inner point of the

domain is a limit cycle [9]. This is a streamline ca so that

there is a t0 2 IR with

�a�t� nt0� � �a�t� 8n 2 IN : �4�

Fig. 1 shows a typical example. Such a cycle is called

structurally stable if, after small changes, the vector field

still contains a closed streamline. Such stability arguments

allow concentration on critical points, boundary regions,

and closed cycles as possible �- and !-limit sets [5], [9]. In

this sense, this article completes the topological analysis of

planar vector fields.
The union of all streamlines with the same origin is

described by the �-basin

B��S� � fa 2 DjS is the �-limit set of �ag;
where S may be a source, saddle, inflow set, or limit cycle.

The union of all streamlines with the same end is described

by the !-basin B!�S� � fa 2 DjS is the !-limit set of �ag.
The final result of the topological analysis can be described

as a decomposition of the domain D of the vector field in

subsets with uniform behavior of the streamlines. To

describe this, we denote with a1; . . . ; aj the sources, with

s1; . . . ; sk the saddles, with z1; . . . ; zl the sinks, and with

b1; . . . ; bm the boundary saddles of v. The inflow compo-

nents of the boundary are denoted by I1; . . . ; In, the outflow

components by O1; . . . ; Oo, and the boundary flow compo-

nents by T1; . . . ; Tp. The attractive orbits are written as

A1; . . . ; Aq and the repelling orbits by Z1; . . . ; Zr. The

domain D � IR2 of the vector field can now be decomposed

into �-basins

D �
[j
i�1

B��ai� [
[n
i�1

B��Ii� [
[q
i�1

B��Ai� [
[k
i�1

B��si�

[
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i�1

B��bi� [
[r
i�1

Zi [
[o
i�1

Oi [
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i�1

fzig

and into !-basins

D �
[1
i�1

B!�zi� [
[o
i�1

B!�Oi� [
[r
i�1

B!�Zi� [
[k
i�1
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The topological analysis gives the connected components of

the intersections between � and !-basins. The visualization

shows the boundaries of these components so that the

components themselves become visible.
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Fig. 1. A limit cycle may attract streamlines in its neighborhood.

Fig. 2. PoincareÂ section and PoincareÂ map.



2.2 PoincareÂ-Map

Let us assume we have a two-dimensional vector field
containing one limit cycle. Then, we can choose a point P
on the limit cycle and draw a cross section S which is a
line segment nowhere parallel to the vector field. This
line is then called a PoincareÂ section. If we start a
streamline at an arbitrary point x on S and follow it
until we cross the PoincareÂ section S again, we get
another point R�x� on S. This results in the PoincareÂ map
R. Fig. 2 illustrates the situation. The left part shows the
PoincareÂ section with the limit cycle in the middle drawn
with a thicker line, while the right part displays the
PoincareÂ map itself. Obviously, the point P on the limit
cycle is a fix point of the PoincareÂ map.

3 DETECTION OF CLOSED STREAMLINES

As mentioned in Section 2.1, a closed streamline 
 : IR!
IR2; t 7! 
�t� is a streamline of a vector field v such that
there is a t0 2 IR with 
�t� nt0� � 
�t� 8n 2 IN and 
 not
constant. We present an algorithm that detects if an
arbitrary streamline c converges to such a closed curve,
also called a limit cycle. This means that c has 
 as � or
!-limit set, depending on the orientation of integration. We
do not assume any knowledge on the existence or location
of the closed curve so that the algorithm can detect closed
streamlines. The principle of the algorithm works on any
piecewise defined planar vector field where one can
determine the topology inside the pieces.

3.1 Finding Closed Streamlines

The basic idea of the algorithm is to determine a region of
the vector field that is never left by the streamline.
According to the PoincareÂ-Bendixson-Theorem, a stream-
line approaches a limit cycle if no singularity exists in that
region. We assume that the data of the vector field is given
on a grid consisting of triangles and/or quadrilaterals. The
vectors inside a cell are interpolated so that we get at least a
continuous vector field. In a precomputational step, we
calculate every singularity of the vector field.

A streamline approaching a limit cycle has to reenter the
same cell again, as shown in Fig. 3. In this case, we check if

the cells crossed by the streamline have not changed for the
last two turns. This results in a cell cycle which identifies the
above-mentioned region. To examine if this cell cycle is left
by the streamline, we detect possible changes by checking
the edges of the cells of the cell cycle. Therefore, we find the
points on each edge, which we call potential exits, where an
outflow out of the cell cycle may occur near these points.
These points are identical with the vertices of the edge and
points where the vector field is tangential to the edge.

Then, we have to figure out if the actually investigated
streamline will leave the cell cycle near such an exit.
Therefore, we integrate a streamline backward from the
potential exit to see if it leaves the cell cycle. If this is not the
case, after the streamline crosses every cell involved in the
cell cycle, it is shown that this backward integration
converges to the streamline we actually investigate. Because
the vectors at each edge are interpolated linearly, the
streamline cannot turn around and cross the edge in the
opposite direction between two vectors pointing in the
direction of the streamlines, namely the two vectors we
followed by the two turns of the actually investigated
streamline while detecting the cell cycle. Therefore, it is
sufficient to consider only one full turn of the backward
integration, as in Fig. 4. We call this potential exit a real exit
because the streamline will leave the cell cycle after a finite
number of turns near that exit. Fig. 4 displays an example
for that case.

If the backward integrated streamline leaves the cell
cycle, i.e., it diverges from the actually investigated stream-
line, the streamline we want to check cannot leave the cell
cycle in that potential exit because then we have an inflow
into our region which will leave again at the exit, as shown
in Fig. 5. Consequently, this is not a real exit.

It is sufficient to treat only the vertices of the cells and the
points where the vector field is tangential because if the
backward integration of any point on an edge leaves the cell
cycle, the backward integration starting at one of these
potential exits will also do. Fig. 6 shows the different
configurations of potential exits. Let E be a point where we
can leave the cell cycle. In Fig. 6a, both backward integrated
streamlines starting at the vertices V1 and V2 leave the cell
cycle. Consequently, E cannot be an exit because it has to
cross one of the other backward integrated streamlines.
Because of the linear interpolation at the edge, Fig. 6b is also
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Fig. 3. A streamline approaching a limit cycle has to reenter cells.

Fig. 4. If a real exit can be reached, the streamline will leave the cell

cycle.



impossible. To get a possible configuration, the backward

integration starting at the vertex V1 also must converge the

streamline because it cannot cross the backward integration

starting at point E as in Fig. 6c. Fig. 6d explains why we also

need to investigate the tangential case. If we start a

backward integrated streamline at point E, it converges

toward the streamline we actually investigate. But, if we

only consider the vertices of the edge, both exits are not real

exits. Therefore, we also have to start a backward integrated

streamline at the point T , where the vector field is

tangential to the edge, to figure out that we leave the cell

cycle at this edge.
If there is no real exit for the streamline, we have proven

that the streamline will never leave the cell cycle. Because of

the PoincareÂ-Bendixson-Theorem, there exists a closed

streamline in our cell cycle and the integral curve tends

toward it. If we can find a real exit, we have to continue the

streamline calculation.
Fig. 7 illustrates the situation which shows a real

example which is discussed in Section 5. There, we start a

streamline near the source in the center of the figure. This

streamline spirals until we find the first cell cycle, where we

stopped the integration for this example. The figure also

shows all exits and its backward integrations which are

drawn in blue color and the streamline itself colored black.

The grid is displayed in light blue. In this example, every

potential exit is shown. We can see in this example that

potential exits which are passed by a backward integrated

streamline do not need to be investigated because if the

backward integrated streamline leaves the cell cycle, the

other one will also do so. Fig. 8 shows this in detail. There,

the backward integrated streamline starting at Exit 2 also

has to leave the cell cycle because it cannot cross the

backward integrated streamline starting at Exit 1. In the

other case, where the backward integrated streamline

started at Exit 1 stays inside the cell cycle, we have to

continue the actually investigated streamline, anyway.
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Fig. 5. If no real exit can be reached, the streamline will approach a limit

cycle.

Fig. 6. Different cases of potential exits. (a) is impossible because streamlines cannot cross each other, (b) contradicts with the linear interpolation on

an edge, in (c) and (d), both backward integrations converge toward the actual streamline so that the point E is a real exit.



Since the streamline spirals from the inner region to the

outside, we only have to consider the potential exits in that

direction. In the example, every backward integration

leaves the cell cycle. Consequently, there is a limit cycle in

this cell cycle which can be localized as described in

Section 4.
In detail, our algorithm has three different states:

1. Streamline integration: Calculating one edge inter-
section after the other, check at each edge if we
reached a cell cycle,

2. Checking for exit: Going backward through the
intersected edges and looking for potential exit
points,

3. Validating exit: Integrating backward a curve from
the potential exit through all edges of the loop.

The algorithm switches its state after the events shown in

Table 1, as can also be seen from the state diagram in Fig. 9.

4 EXACT LOCATION OF THE CLOSED STREAMLINE

The exact position of the limit cycle can be found using the

PoincareÂ map explained in Section 2.2, where we have to

find the fix point to get a point on the limit cycle. If we find

a cell cycle, we can use the edge where we detected the cell

cycle for the first time as a PoincareÂ section. To find the fix

point of the PoincareÂ map, we do a binary search: We divide

the edge into two parts at the midpoint of the edge and

check which part gets intersected by the streamline which is

started at the intersection point after one turn. Then, this

part is subdivided again and we start another streamline.

This continues until we are close enough at the fix point of

the PoincareÂ map. Then, we have determined one point of

the limit cycle. If we start a streamline at this point, we get

the whole limit cycle after we crossed every cell of the cell

cycle. This method terminates because we proved in the

previous step, where we detected the cell cycle, that we

converge to a limit cycle.
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Fig. 7. Exits of a cell cycle.

Fig. 8. Exits of the cell cycle which do not need to be investigated. Fig. 9. The UML state diagram of our algorithm.



5 RESULTS

Our first example is a vector field containing only one
closed streamline. It was generated by sampling a slightly
changed version of the Van der Pol's equation on a regular
grid of sample points. The defining equation for the vector
field V is

V
x

y

� �
� yÿ x3 � �x

ÿx
� �

: �5�

According to [9], a limit cycle is present for 0 < � � 1 so that
we can find a limit cycle. An analysis of the field shows that
we have a source at �0; 0�. When starting our algorithm near
that singularity, it integrates the streamline until it detects
the limit cycle, as shown in Fig. 10. Fig. 10 also includes the
hedgehog of the vector field, a glyph visualization method
where we use arrows representing the vectors at the
corresponding position. The arrows are twice as long as
the vectors of the field.

In Fig. 11, we investigate a vector field which spirals
from the singularity to the outer regions. Again, we used
(5), but we set � � ÿ0:02 to compute the vector field.
Consequently, there is no limit cycle in the vector field and
our algorithm correctly fails to detect one when started near
the singularity at �0; 0� and continues the streamline
computation until the edge of the vector field is reached.
Here, the hedgehog of the vector field is also displayed,
scaled by factor of two.

The third example is a simulation of a swirling jet with
an inflow into a steady medium. The simulation originally
resulted in a three-dimensional vector field, but we used a
cutting plane and projected the vectors onto this plane to
get a two-dimensional field. In this application, one is
interested in investigating the turbulence of the vector field
and in regions where the fluid stays very long. This is
necessary because some chemical reactions need a special
amount of time. These regions can be located by finding
closed streamlines. Fig. 12 shows the hedgehog of that
vector field scaled by a factor of two. In Fig. 13, one can see
some of the closed streamlines detected by our algorithm.
All these limit cycles are located in the upper region of the
vector field. Additionally, Fig. 13 includes the hedgehog,
where the arrows representing the vectors are four times
longer than the corresponding vector.

To compare our enhancements to the usual streamline
computation methods, we implemented an algorithm
which computes the topological skeleton as described in
[7]. Therefore, we have to determine the singularities. Then,
we start a streamline at each saddle point, displaced a little
bit in the positive and negative eigendirection of both
eigenvectors. Remember that our algorithm does not need
any exit conditions other than the detection of closed
streamlines or reaching a singularity or the border of the
data!

To get an idea of the computational cost of our method,
we also implemented a simple ODE solver to compute the
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TABLE 1
Events and State Switching

Fig. 10. Simple vector field with limit cycle. Fig. 11. Simple vector field with no limit cycle.



streamlines. The vector field shown in Fig. 12 contains

337 singularities. The algorithm using a simple ODE solver

needed 738 seconds to compute the topological skeleton on

a Pentium II 350 MHz. Using our streamline integration

method, which uses the same ODE solver but checks for

limit cycles, we only needed 604 seconds on the same

system, which is 18 percent faster! The reason for that is that

we do not need to wait until the ODE solver reaches a

certain number of steps if we run into a limit cycle, which

saves some time which we can use to check for limit cycles.

6 CONCLUSION

We have presented an algorithm for the calculation of

streamlines that detects cycling around closed streamlines.

Since it uses no information on the existence or location of
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Fig. 12. Vorticity vector field of a turbulent flowÐhedgehog.

Fig. 13. Vorticity vector field of a turbulent flowÐlimit cycles.



closed streamlines, it can be used to find these important

topological features. The algorithm uses knowledge about

the vector field which is interpolated linearly at the edge of

the cells. We tested the algorithm with linear interpolation

on a triangular grid and bilinear interpolation with

quadrilateral cells. The algorithm theoretically should work

on other cell types, too, but then it must be considered that

streamlines may cross the edges in both directions, even in

the cell cycle, which means that the streamline may turn

around. The actual implementation sometimes has

problems if there is more than one limit cycle crossing the

same cell because the algorithm may not find the cell cycle

or the exact position of only one limit cycle. This problem is

the subject of current research of our group.
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